Transparent Bilayer ITO Metasurface with Bidirectional and Coherently Controlled Microwave Absorption

Author:

Ge Jiahao123ORCID,Zhang Cheng13,Zhang Yaqiang13,Li Haonan123,Wang Jiahao4,Jiang Ruizhe5,Chen Ke4,Dong Hongxing13ORCID,Zhang Long13

Affiliation:

1. Key Laboratory of Materials for High‐Power Laser Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences Shanghai 201800 China

2. Center for Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China

3. Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China

4. School of Electronic Science and Engineering Nanjing University Nanjing 210023 China

5. State Key Laboratory of Millimeter Waves Southeast University Nanjing 210096 China

Abstract

AbstractMetasurface absorbers (meta‐absorbers) are highly compelling in modern optoelectronic devices. However, owing to the limitations of the sandwiched design framework, conventional meta‐absorbers are restricted to fully absorbing only one‐sided incident waves while completely reflecting the electromagnetic (EM) waves from the opposite direction. In addition, the existing absorbers are opaque and their absorption performances are fixed after the initial design. Here, an optically transparent meta‐absorber consisting of bilayer indium tin oxide patterned layers that can achieve bidirectional and broadband absorption in the microwave frequency range is demonstrated. The inherent physics of bidirectional absorption can be attributed to the interference between multiple reflections and transmissions of EM waves. Furthermore, it is demonstrated that the absorption properties of the proposed meta‐absorber can be continuously switched via coherent control by adding another microwave beam to the other side of the meta‐absorber and manipulating the phase difference between the two input waves. The results indicate that the proposed design can enrich the functionalities of few‐layer metasurfaces and break new ground for EM shielding optical windows.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai Municipality

Aeronautical Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3