Oxygen annealing effect on resistive switching characteristics of multilayer CeO2/Al/CeO2 resistive random-access memory

Author:

Ismail Muhammad,Khan Sobia Ali,Rahmani Mehr Khalid,Choi Junhyeok,Batool ZahidaORCID,Rana Anwar Manzoor,Kim SungjunORCID

Abstract

Abstract Cerium oxide-based memristors have been extensively studied because of their compatibility with CMOS technology. Yet, inconsistency of resistive switching parameters is one of the main contests in development of nonvolatile memory for commercialization. Owing to filamentary nature of the resistive switching devices, variability of the resistive switching characteristics can be reduced by doping, where conductive filaments can easily grow due to reduction in the formation energy of oxygen vacancies. In this work, multilayer CeO2/Al/CeO2 films were prepared through radio-frequency (rf) sputtering at room temperature to study the effect of oxygen annealing on the resistive switching characteristics. Device with CeO2/Al/CeO2 multilayer structure after annealing exhibits reduction of defects and improved switching endurance, good data retention, and uniformity in operational parameters. The resistive switching characteristics have been simulated using space charge limited conduction and Schottky emission at high field region of the high resistance state, which is well fitted by linear curve fitting analysis. Improvement in the switching characteristics revealed that Al charge trapping layer has diffused into the CeO2 matrix, which might have resulted in lower density of oxygen vacancies due to oxygen annealing. Experimental I–V analysis indicate that oxygen annealing is an effective approach to enhance the switching characteristics of RRAM devices.

Funder

National Research Foundation of Korea

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3