Solution-Processable ZnO Thin Film Memristive Device for Resistive Random Access Memory Application

Author:

Patil Swapnil,Chougale Mahesh,Rane Tushar,Khot Sagar,Patil Akshay,Bagal Ojus,Jadhav Sagar,Sheikh Arif,Kim Sungjun,Dongale Tukaram

Abstract

The memristive device is a fourth fundamental circuit element with inherent memory, nonlinearity, and passivity properties. Herein, we report on a cost-effective and rapidly produced ZnO thin film memristive device using the doctor blade method. The active layer of the developed device (ZnO) was composed of compact microrods. Furthermore, ZnO microrods were well spread horizontally and covered the entire surface of the fluorine-doped tin oxide substrate. X-ray diffraction (XRD) results confirmed that the synthesized ZnO was oriented along the c-axis and possessed a hexagonal crystal structure. The device showed bipolar resistive switching characteristics and required a very low resistive switching voltage (±0.8 V) for its operation. Two distinct and well-resolved resistance states with a remarkable 103 memory window were achieved at 0.2-V read voltage. The developed device switched successfully in consecutive 102 switching cycles and was stable over 102 seconds without any observable degradation in the resistive switching states. In addition to this, the charge–magnetic flux curve was observed to be a single-valued function at a higher magnitude of the flux and became double valued at a lower magnitude of the flux. The conduction mechanism of the ZnO thin film memristive device followed the space charge limited current, and resistive switching was due to the filamentary resistive switching effect.

Funder

Department of Science and Technology, Ministry of Science and Technology

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3