Abstract
Abstract
Multi-walled carbon nanotube (MWCNT)/Cu composite containing 0.5 vol% MWCNTs were prepared by a high energy ball milling followed by conventional sintering and finally cold rolling. Microstructure studies showed that MWCNTs were uniformly dispersed and implanted inside the Cu matrix. The MWCNT/Cu composites showed an improvement in hardness and tensile strength up to 37% and 44% respectively compared to those of pure Cu. The enhancement is attributed to the uniform dispersion and strengthening due to the addition of MWCNTs. The yield strength of the composite has been quantified by several strengthening mechanisms including grain boundary strengthening, dislocation strengthening, Orowan strengthening and load transfer. The calculated results indicated that the load transfer strengthening has the largest contribution to the yield strength of the composite which implied the key role of the interfacial bond strength between MWCNTs and Cu matrix on the strengthening behaviors. The friction coefficient and specific wear rate of the composites were reduced with the addition of MWCNT content due to the self-lubrication effect of CNTs and high mechanical properties.
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献