Effect of carbon nanotubes on the electrical, thermal, mechanical properties and crystallization behavior of continuous carbon fiber reinforced polyether-ether-ketone composites

Author:

Qiao Liang,Zhu Kaili,Tan HongshengORCID,Yan Xu,Zheng Lihang,Dong Shuhua

Abstract

Abstract The continuous carbon fiber reinforced Polyether-ether-ketone (PEEK) prepreg tapes with the addition of carbon nanotubes (CNTs) were prepared by a wet powder impregnation process. Their electrical conductivity, thermal conductivity, the tensile properties, dynamic mechanical behavior, fracture morphology and crystallization melting behavior were investigated. The results show that, the electrical conductivity (σ), thermal conductivity (λ), tensile strength (σ t) and interfacial adhesion of the prepreg tapes were obviously improved with the addition of CNTs. When CNT content was 1.0 wt%, the σ of CNT/CCF/PEEK prepreg tapes in the 0° direction reached a maximum value of 0.701 s cm−1, which was increased 165% than that of CCF/PEEK prepreg tapes. The λ reached 1.053 W m−1·K−1, which was improved by 12.14%. The tensile strength was 1489 MPa, which was increased by 16.4%. The results of SEM images show that the interface adhesion between the fiber and the matrix is good. The results of DMA indicate that, the capability of deformation resistance of the prepreg tapes were further improved with the addition of CNTs. When the temperature was 280 °C, the decline rate of E′ of 1.0 wt% CNT/CCF/PEEK prepreg tapes were 3.58%. The results of DSC indicate that, the T c of CNT/CCF/PEEK prepreg tapes moved to high temperature after adding CNTs, which indicate that CNTs played a role of heterogeneous nucleation in the PEEK matrix.

Funder

Natural Science Foundation of Shandong Province

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3