Electrical and microstructural properties of Ta-C thin films for metal gate

Author:

Aihaiti Litipu,Tuokedaerhan KamaleORCID,Sadeh Beysen,Zhang Min,Xiang Qian Shen,Mijiti Abuduwaili

Abstract

Abstract Carbon rich Nano-crystalline grain size tantalum carbide (Ta-C) thin films were prepared by non- reactive simultaneously dual magnetron sputtering. The main purpose of the current work was to investigate the influence of deposition method, deposition power, film thickness and annealing temperature on structural, surface morphology and electrical resistivity of TaC thin films. The experimental result shows that the growth rate of film was about 6.7 nm min−1 and films are growth like spherical structure. The atomic percentage of elements in the films were very sensitive to the deposition power, which even if the small amount of increases in the deposition power of Ta lead the increase of Ta content. However, a small change in Ta percentage did not result in a change in film structure and surface morphology. Annealing temperature did not cause structural changes in the films, but lead small changes in the grain size (range from 7.0 to 9.1 nm) and surface roughness. Resistivity variation of deposited TaC films on the annealing temperature shows random behavior which may cause by the deposition method. Nevertheless, the resistivity of the film decreases first and then increases when the thickness increases from 79.2 nm to 134 nm. Minimum resistivity of film appears at the thickness of 79.2 nm, about 235.2 μΩ.cm. In the end, deposited TaC thin films shows good thermal stability and low enough resistivity for gate electrode application.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3