Effects of annealing temperature on structural phase transition and microstructure evolution of hydrothermally synthesized barium titanate nanoparticles

Author:

Lee JongbeomORCID,Jeong Haguk,Ma Seongun

Abstract

Abstract Commercial hydrothermally synthesized BaTiO3 powder with a cubic structure was annealed in a temperature range of 650 °C–900 °C, and the cubic-tetragonal structure transition and microstructure evolution of the powder were investigated in relation to the annealing process. The BaTiO3 powder used had a cubic structure below an annealing temperature of 800 °C and a tetragonal structure above 850 °C. Particle growth occurred under a low activation energy of ∼33.2 kJ mol−1 because of the nanocrystalline size effect, while the crystallite size slightly decreased in the powder with the cubic structure and sharply increased in that with the tetragonal structure. This was because the OH group in the powder with the cubic structure influenced the lattice extension on the particle surface. This stabilized the cubic structure and reduced the crystal ordering, which retarded the crystallite size. When the annealing temperature was increased, the crystallite growth reduced the intrinsic strain and enhanced the tetragonality in the powder with the tetragonal structure as a result of the removal of the OH group.

Funder

Korea Evaluation Institute of Industrial Technology: Materials & Components Technology Development Program

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3