Frugal discrete memristive device based on potassium permanganate solution

Author:

Revadekar Chetan C,Takaloo Ashkan Vakilipour,Shinde Sandeep P,Patil Swapnil R,Kundale Somnath S,Kim Deok-keeORCID,Dongale Tukaram DORCID

Abstract

Abstract Many thin film-based devices with solid electrolytes have been studied for memristive applications. Herein, we report a simple and facile way to fabricate solution-based, low-cost, and discrete two-terminal memristive devices using the KMnO4 solution. The water and methanol were used as a solvent to prepare different concentrations of KMnO4 to carry out the optimization study. Furthermore, the effect of KMnO4 concentration with aqueous and methanol solvents was studied with the help of current-voltage, device charge, charge-flux, and cyclic endurance properties. Interestingly, all developed devices show the asymmetric time-domain charge and double valued charge-flux properties, suggesting that aqueous KMnO4 and methanol-KMnO4 based devices are non-ideal memristors or memristive devices. The statistical measures such as cumulative probability and coefficient of variation are reported for the memristive devices. The possible switching mechanism of the discrete memristive was tried to explain with the UV-visible spectrum and theoretical framework. The optimized device was further studied using the cyclic voltammogram, Bode plot, and Nyquist plot. An equivalent circuit was derived for the optimized discrete memristive device using electrochemical impendence spectroscopy results. The results of the present investigation are beneficial to develop programmable analog circuits, volatile memory, and synaptic devices using discrete memristive devices.

Funder

MOTIE

Ministry of Trade, Industry & Energy

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3