Design and fabrication of an electrothermal MEMS micro-actuator with 3D printing technology

Author:

Ulkir OORCID

Abstract

Abstract This study presents the design and fabrication results of an electrothermal micro-electro-mechanical system (MEMS) actuator. Unlike traditional one-directional U-shaped actuators, this bi-directional electrothermal (BET) micro-actuator can produce displacements in two directions as a single device. The BET micro-actuator was fabricated using two-photon polymerization (2PP) and digital light processing (DLP) methods, which are 3D printing techniques. These methods have been compared to see the success of BET micro-actuator fabrication. The compound of these methods and the essential coefficients through the 3D printing operation were applied. Evaluation experiments have demonstrated that in both methods, the 3D printer can print materials smaller than 95.7 μm size features. Though the same design was used for the 2PP and DLP methods, the supporting structures were not produced with the 2PP. The BET micro-actuator was manufactured by removing the supports from the original design in the 2PP. The number of supports, the diameter, and height on the arms of the micro-actuator is 18, 4 μm, and 6 μm, respectively. Although 4 μm diameter supports could be produced with the DLP, it was not possible to produce them with 3D printing device based on 2PP. Besides, the DLP was found to be better than the 2PP for the manufacturing of asymmetrical support structures. The fabrication process has been carried out successfully by two methods. When the fabrication success is compared, the surface quality and fabrication speed of the micro-actuator fabricated with DLP is better than the 2PP. Presented results show the efficiency of the 3D printing technology and the simplicity of fabrication of the micro-actuator via 2PP and DLP. An experimental study was carried out to characterize the relationship between displacement and input voltage for the micro-actuator. Experimental results show that the displacement range of the micro-actuator is 8 μm with DLP, while 6 μm with 2PP.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3