Anti-reflection for monocrystalline silicon from diamond-like carbon films deposited by magnetron sputtering

Author:

Tan XinORCID,Zhai Hang,Meng Keke,Zhang Zhongyi

Abstract

Abstract In this work, diamond-like carbon (DLC) films used as anti-reflective coatings for monocrystalline silicon were deposited by magnetron sputtering for potential application in solar cells. The microstructural and optical properties of the films were investigated as a function of substrate temperature over a wide range during deposition. It showed that, when the substrate temperature increased from RT to 800 °C, the hybridized structures of the DLC films accordingly changed associated with a significant variation of refractive index between2.22 and 1.64 at a wavelength of 550 nm. Three types of coating systems, namely single-, three- and five-layer films on monocrystalline silicon substrates, were designed based on the anti-reflection principle and fabricated in terms of the relationships of refractive index and deposition rate with substrate temperature. In particular, a well-designed three-layer film, of which the refractive index gradually changed along the thickness, that is 1.8, 1.9 and 2.0, respectively, was successfully deposited at one step on monocrystalline silicon substrates by adjusting substrate temperature and deposition time, and featured a broadband anti-reflective characteristic with low average reflectivity of 8.7% at a wide solar spectrum of 400–1100 nm. This work demonstrates that the DLC film has a promising application potential as broadband anti-reflective coatings in silicon-based solar cells.

Funder

Inner Mongolia Autonomous Region Science and Technology Innovation Guidance Project

National Natural Science Foundation of China

Key Research and Development Program of China

Natural Science Foundation of Inner Mongolia

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3