LeichtPRO-profiles: development and validation of novel linear biocomposite structural components fabricated from pultruded natural flax fibres with plant-based resin for sustainable architectural applications

Author:

Spyridonos EvgeniaORCID,Gerstner Andreas,Nehmeier Michael,Dahy HanaaORCID

Abstract

Abstract Reconsidering the materials used in construction is crucial within the building industry, particularly in the context of sustainability. Recently, there has been a growing interest in exploring novel materials, with fibre-reinforced composites emerging as a prominent choice with biocomposites standing out as promising for advancing sustainability goals. This paper introduces the development of LeichtPRO-Profiles, continuous linear biocomposite profiles fabricated using the pultrusion technology. A primary focus is the application of these profiles in structural systems as load-bearing elements, emphasising the significance of understanding their mechanical properties. Specifically, an original application involves active-bending structures, necessitating a focus on the material’s bending behaviour. This study discusses the methods employed in developing the pultruded biocomposite profiles which are made from natural flax fibres and an optimised matrix formulation based on a plant-based resin system. This research also outlines the optimisation of the fabrication process of these biocomposite profiles using bio-based ingredients. The results demonstrate the material’s mechanical capabilities through extensive experiments and mechanical tests, revealing a compression strength of 31.2 kN and a flexural strength of 300 MPa, with a bending radius of up to 2.4 m, indicating its suitability for structural applications. Concepts of applications in several systems across different scales and contexts are also presented. The versatility and adaptability of this product make it suitable for a wide range of applications spanning various scales and thematic contexts.

Funder

Fachagentur Nachwachsende Rohstoffe e.V. (FNR) under Bundesministeriums für Ernährung und Landwirtschaft

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3