Tensegrity FlaxSeat: Exploring the Application of Unidirectional Natural Fiber Biocomposite Profiles in a Tensegrity Configuration as a Concept for Architectural Applications

Author:

Renner Markus1,Spyridonos Evgenia2ORCID,Dahy Hanaa234ORCID

Affiliation:

1. Faculty of Architecture and Urban Planning, University of Stuttgart, Keplerstrasse 11, 70174 Stuttgart, Germany

2. BioMat@Stuttgart: Bio-Based Materials and Materials Cycles in Architecture, Institute of Building Structures and Structural Design (ITKE), University of Stuttgart, Keplerstrasse 11, 70174 Stuttgart, Germany

3. BioMat@Copenhagen: Bio-Based Materials and Materials Cycles in the Building Industry Research Centre-TECH-Technical Faculty for IT & Design, Planning Department, Aalborg University, Meyersvænge 15, 2450 Copenhagen, Denmark

4. Department of Architecture (FEDA), Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt

Abstract

Material selection is crucial for advancing sustainability in the building sector. While composites have become popular, biocomposites play a pivotal role in raising awareness of materials deriving from biomass resources. This study presents a new linear biocomposite profile, fabricated using pultrusion technology, a continuous process for producing endless fiber-reinforced composites with consistent cross-sections. The developed profiles are made from flax fibers and a plant-based resin. This paper focuses on the application of these profiles in tensegrity systems, which combine compression and tension elements to achieve equilibrium. In this study, the biocomposite profiles were used as compression elements, leveraging their properties. The methods include geometrical development using physical and digital models to optimize the geometry based on material properties and dimensions. A parametric algorithm including physics simulations was developed for this purpose. Further investigations explore material options for tension members and connections, as well as assembly processes. The results include several prototypes on different scales. Initially, the basic tensegrity principle was built and explored. The lessons learned were applied in a final prototype of 1.5 m on a furniture scale, specifically a chair, integrating a hanging membrane serving as a seat. This structure validates the developed system, proving the feasibility of employing biocomposite profiles in tensegrity configurations. Furthermore, considerations for scaling up the systems to an architectural level are discussed, highlighting the potential to enhance sustainability through the use of renewable and eco-friendly building materials, while promoting tensegrity design applications.

Funder

Fachagentur Nachwachsende Rohstoffe e. V. (FNR, Agency for Renewable Resources) under Bundesministeriums für Ernährung und Landwirtschaft

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3