Abstract
Abstract
The hydrangea macrophylla-like SnO2 microspheres doped with different Ce contents (0, 2, 6 and 10 mol%) were synthesized by a facile hydrothermal method. The crystal phase, micro morphology and element composites were investigated by x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) with energy-dispersive spectroscopy (EDS) and x-ray photoelectric spectroscopy (XPS). The results demonstrated the hydrangea macrophylla-like microstructure of the prepared samples and the existence of Ce3+/Ce4+ when doped with Ce element. Furthermore, the synthesized Ce-doped SnO2 samples’ sensing properties were investigated. The SnO2 microspheres doped with 6 mol% showed the largest response to acetone during 0.2–20 ppm at 320 °C as well as good selectivity and reproducibility. As discussed, the Ce doping that generates n-n type heterojunction and the Ce3+/Ce4+ conversion increases the resistance change of Ce-doped SnO2 in reducing atmosphere and enhances the response.
Funder
National Natural Science Foundation of China
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献