Abstract
Abstract
Surface activated bonding (SAB) based on argon ion beam irradiation was used to directly bond Si and Si wafers at room temperature, and the effects of the surface activation time on the Si-Si bonding were investigated. The experimental results show that the surface activation treatment with a proper duration is beneficial to the reduction of surface roughness of Si wafers and the realization of high bonding strength. The Si-Si wafers bonded after the surface activation of 420 s has an extremely low percentage of area covered by voids (0.08%) and a high bonding strength (9.45 MPa). Meanwhile, the annealing at 500 °C does not lead to a significant change in the percentage of area covered by voids for Si-Si bonding. Besides, the transmission electron microscope characterization indicates that the argon ion beam irradiation of 180 s can result in the formation of an amorphous Si layer with a thickness of approximately 10.6 nm at the Si-Si bonding interface, and the whole cross-section structure of the Si-Si bonding consists of a Si substrate, an amorphous Si layer and a Si substrate.
Funder
National Key Research and Development Program of China
Foundation of Science and Technology on Low-Light-Level Night Vision Laboratory
National Natural Science Foundation of China
Natural Science Basic Research Program of Shaanxi
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献