In vitro degradation behavior of as-cast Mg-3Zn-1Ca-0.5 Sr alloy

Author:

Liu HeningORCID,Zhang KuiORCID,Yuan Jiawei,Li Yongjun,Li Xinggang,Ma Minglong,Shi Guoliang,Wang Kaikun

Abstract

Abstract Recent advancements in bone implant materials have led to the development of various alloys. In this study, the degradation behavior of the as-cast Mg-3 wt% Zn-1 wt% Ca-0.5 wt% Sr alloy in vitro was investigated using x-ray diffraction (XRD), scanning Kelvin probe force microscopy (SKPFM), and scanning electron microscopy (SEM). Our results demonstrated that the alloy microstructure was composed of α-Mg, a Ca2Mg6Zn3 phase, and a Mg17Sr2 phase. The Ca2Mg6Zn3 phase, which had the smallest absolute potential, was shown to have cathodic protection, while the α-Mg, which had the largest absolute potential, was shown to prefer corrosion. The in vitro corrosion products of the as-cast alloy were Mg(OH)2, a Ca-P compound, and HA. At the beginning of the corrosion, the hydrogen evolution rate of the alloy was fast due to the thin corrosion product layer. With the extension of the corrosion time, the corrosion layer thickened and the hydrogen evolution rate slowed down and stabilized to 1.25 × 10−5 mol cm−2 · h . Due to the high concentration of Ca and Mg ions near the second phase, HA was quickly deposited and an ion exchange channel between the solution and the alloy was formed, making it easier for the Mg, Ca, and Sr ions to enter the solution and promote the formation of HA. The hysteresis effect of Sr element was found, that is, Sr ions were released into the solution after etching for a period of time, which promoted the formation of HA and HA-containing Sr (Sr/HA).

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3