Affiliation:
1. Northeastern University
2. Northern Hospital
Abstract
In
v
itro degradation behaviour and biological properties of Mg-4.0Zn-2.0Sr alloy sheet had been studied. The results indicate that a novel biodegradable Mg-4.0Zn-2.0Sr (wt. %) alloy sheet was successfully produced using a series of metallurgical processes. The corrosion of Mg-4.0Zn-2.0Sr (wt. %) alloy sheet immersed in SBF occurred as a cyclic process: pitting corrosion →extending of pitting corrosion along grain boundary→ localized corrosion → pitting corrosion again at the new exposed surfaces and the corrosion products were found that contain HA, CaCO3 and MgOH. The change of corrosion rate of Mg-4.0Zn-2.0Sr alloy sheets immersed in SBF is unstable until the 17th day and the average corrosion rate of the alloy sheets was 1.244 g/(m2 • h) after 17 days immersing, which is slightly higher than that of Mg-4.0Zn-1.0Sr alloy sheet 1.163 g/(m2 • h). The corrosion resistance property in SBF of Mg-4.0Zn-2.0Sr alloy is slightly lower than that of Mg-4.0Zn-1.0Sr alloy, which is proved by electrochemical measurements.
Publisher
Trans Tech Publications, Ltd.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献