Investigation of wear resistance for variable configurations of woven glass-fiber reinforced composite materials

Author:

Al-Tameemi Hamza AbdulrasoolORCID,Ali Ahmed Abdul Hussain,Hussein Ban

Abstract

Abstract Glass fiber composites are widely used in different engineering applications due to their valuable properties of superior weight and strength compared with metals. The tribological properties of these composites vary significantly with the operational conditions and fiber distribution. In this study three orthogonally aligned and chopped fibers were used to manufacture four types of composites with similar volume fraction. The orthogonal (woven) fibers have three different configurations with different width of warp and weft and different aligning distance. Weight loss under dry contact was examined using a tribometer (ASTM G65) with a flat specimen on a steel ring. This study showed that for the composite with the thinnest warps and wefts, and those with the largest distance between adjacent yarns, Archard wear coefficient was the lowest and this also corresponded the lowest weight or volume loss at all speeds. It was found that toughness can specify the wear resistance more than hardness. Only the composite with chopped glass fiber showed a steady wear rate with sliding speed, while the wear rate for the composite with woven fibers increases with sliding speed. The wear mechanism was mainly by the formation and removal of a brittle layer that appeared as a result of friction heat, and this caused partial cutting and removal of the fibers. The penetration of resin into the woven matrix is more important for higher wear resistance than the density of the yarns in the woven fibers.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3