Research on influence of grain boundaries on the mechanical properties of 460 MPa refractory steel used for high-strength building structures

Author:

Wu Hong-YuORCID,Cong Jing-HuaORCID,Liu Qi,Zhao Jing-Xiao,Wang Zhi-Quan,Wang Xue-Min,Liu Peng-Cheng

Abstract

Abstract In this paper, the microstructure of Mo-type seismic refractory steel for building g, as well as different boundary densities and boundary ratios, are combined with elevated-temperature mechanical properties analysis to explore the laws of boundary for high-temperature performance. The results show that salt water cooling (SWC) and water cooling (WC) can obtain lath bainite with a higher content, and oil cooling (OC) with a lower cooling rate can obtain the microstructure of multiphase bainite + bulk ferrite. The boundary characterization results show that when the sample contains more high angle grain boundaries (Block and High-Packet boundaries), and the dislocation density is high, it can make it have better mechanical properties at room temperature. When the content of low angle boundary and low interfacial energy twin boundary (Σ3 boundary, which is mainly composed of V1/V2 variant pair) is high, it will have better microstructure stability after high temperature tempering, and the boundary density and dislocation density will decrease slightly, ensuring that it has better refractory performance.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference28 articles.

1. Development and study of high-strength low-Mo fire-resistant steel;Wan;J. Materials & Design,2012

2. Study on microstructure and properties of low-Mo fire-resistant steel;Wan;J. Advanced Materials Research,2010

3. The behaviour of structural steels at elevated temperatures and the design of fire resistant steels;Sha;J. Materials Transactions,2001

4. Development of a fire resistant low alloy steel for construction;Sun;J. Advanced Materials Research,2012

5. Development and practical application of fire-resistant steel for buildings;Chijiiwa;J. Nippon Steel Technical Report,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3