Phase assemblage and properties of laser cladded TixCrFeCoNiCu high-entropy alloy coating on aluminum

Author:

Li Yanzhou,Shi YanORCID

Abstract

Abstract The TixCrFeCoNiCu(x:molar ratio, x = 0 , 0.2 , 0.5 , 0.8 , or 1.0 ) coating was depositd on aluminum by laser cladding. The phase structure, microstructure, hardness, wear resistance and corrosion resistance were studied. The results show that with the increase of Ti content, the phase structure of the TixCrFeCoNiCu coating changes from single FCC to FCC + B2, and FCC + Laves phase. When Ti is increased to 1.0, cracks appear in the coating. The hardness of the TixCrFeCoNiCu coating is enhanced with the increase of Ti content, and ranges from 215HV0.2 to 585HV0.2, which is about 3 to 7 times that of the substrate. The strengthening mechanism of Ti0.2CrFeCoNiCu is solid solution strengthening, and when the Ti content is greater than 2, the strengthening mechanism of TixCrFeCoNiCu coating is precipitation strengthening. The influence of Ti on the wear resistance exhibits the same trend as with hardness. When Ti increased from 0 to 0.8, the wear rate of the TixCrFeCoNiCu coating changed from 2.26 × 10 4 mm 3 Nm 1 to 9.92 × 10 7 mm 3 Nm 1 : smaller than the substrate. The addition of Ti increases the current corrosion density of TixCrFeCoNiCu coating, but both coatings still exhibits superior corrosion resistance relative to the substrate.

Funder

Project supported by the Equipment pre-research field Foundation of China

Research on key technologies of laser additive manufacturing of FeCoNiCrCu high entropy alloy formed parts.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3