Effect of Y on Microstructure and Properties of Al0.8FeCrCoNiCu0.5 High Entropy Alloy Coating on 5083 Aluminum by Laser Cladding

Author:

Li Yanzhou123,Shi Yan4ORCID,Wang Hongxin13,Zhou Binjun13,Li Defa13,Lin Hua13,Wang Junqi13

Affiliation:

1. School of Mechanical and Vehicle Engineering, West Anhui University, Luan 237010, China

2. College of Electromechanical Engineering, Changchun University of Science and Technology, Changchun 130012, China

3. Advanced Forming and Green Manufacturing Technology Laboratory of West Anhui University, West Anhui University, Luan 237010, China

4. Gongqing Institute of Science and Technology, Jiujiang 332020, China

Abstract

To improve the surface properties of 5083 aluminum, Al0.8FeCrCoNiCu0.5Yx (x = 0, 0.05, 0.1, and 0.2) high-entropy alloy coatings were prepared by laser cladding. The phase structure and microstructure of the Al0.8FeCrCoNiCu0.5Yx coatings were characterized by XRD and SEM. The tribological properties of the coating were tested by a friction and wear tester. An electrochemical workstation tested the corrosion resistance of the coating. The results show that when Y content is less than 0.2, the Al0.8FeCrCoNiCu0.5Yx coating is in the FCC1, BCC1, and BCC2 phases. When Y is added to 0.2, the coating appears rich in the Y phase. With the increased Y content, the hardness of the coating can increase. The average hardness of Y0, Y0.05, Y0.1, and Y0.2 are 479HV0.2, 517HV0.2, 532HV0.2, and 544HV0.2, respectively. Microstructure evolution leads to an increase in the hardness of the coating. The effect of Y on the wear resistance of the Al0.8FeCrCoNiCu0.5Yx coatings is consistent with the hardness. Al0.8FeCrCoNiCu0.5Y0.2 coating has the lowest wear rate, at is 8.65 × 10−6 mm3/Nm. The corrosion current density of Al0.8FeCrCoNiCu0.5Y0.05 and Al0.8FeCrCoNiCu0.5Y0.1 coatings is in the order of 10−8, which is less than Al0.8FeCrCoNiCu0.5Y0.2 and Al0.8FeCrCoNiCu0.5. The performance of each component coating is superior to that of the substrate.

Funder

university level natural science research project of West Anhui University

the Natural Science Research Project of the Anhui Provincial Department of Education

the Science and Technology Research Project of the Jilin Provincial Department of Education

the High-level Talents Research Project of West Anhui University

Key Research and Development Project of Anhui Province

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3