One-step synthesis of n-CdO/n-SnO2 heterojunction nanofibers for high-performance 3-hydroxy-2-butanone gas sensing

Author:

Jiang ZiqiaoORCID,Wang CeORCID,Yang Zhenglong

Abstract

Abstract Listeria monocytogenes (LM) is a pathogenic bacterium which can release 3-hydroxy-2-butanone (3H-2B) as a biological indicator. We report a high-performance 3H-2B gas sensing strategy for the selective detection of LM. This strategy is realized by n-CdO/n-SnO2 hetero-nanofibers with controllable compositions, synthesized via a facile one-step electrospinning method. The tailored morphologies and microstructures of CdO/SnO2 nanofibers were systematically characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). With the introduction of CdO into SnO2 nanofibers, x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were performed to investigate the effects of crystal phases and elemental states on the 3H-2B sensing properties. According to the gas sensing results, the variation of Cd/Sn molar ratios has a great influence on the 3H-2B sensing properties of CdO/SnO2 nanofibers. The maximum response (45) to 5 ppm 3H-2B is found for 5 mol% CdO/SnO2 nanofibers at 260 °C. Meanwhile, 5 mol% CdO/SnO2 nanofibers exhibit a short response/recovery time (9 s/5 s), outstanding stability, and discriminative selectivity to 3H-2B. The enhanced sensing performance is mainly attributed to the synergy between the resistance modulation of n-CdO/n-SnO2 heterojunctions and the doping effect of Cd2+ ions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3