Nontrivial Topological Phases in Ternary Borides M2XB2 (M=W, Mo; X=Co, Ni)

Author:

Yuan 袁 Danwen 丹文,Yue 岳 Changming 长明,Hu 胡 Yuefang 岳芳,Zhang 张 Wei 薇

Abstract

The nontrivial band topologies protected by certain symmetries have attracted significant interest in condensed matter physics. The discoveries of nontrivial topological phases in real materials provide a series of archetype materials to further explore the topological physics. Ternary borides M2XB2 (M = W, Mo; X = Co, Ni) have been widely investigated as the wear-resistant and high-hardness materials. Based on first-principles calculations, we find the nontrivial topological properties in these materials. Taking W2NiB2 as an example, this material shows the nodal line semimetal state in the absence of spin-orbit coupling. Two types of nodal lines appear near the Fermi level simultaneously. One is protected by the combined space-inversion and time-reversal symmetry, and the other is by the mirror symmetry. Part of these two-type nodal lines form nodal chains. When spin-orbit coupling is included, these nodal lines are fully gapped and the system becomes a strong topological insulator with nontrivial Z 2 index (1;000). Our calculations demonstrate that a nontrivial spin-momentum locked surface Dirac cone appears on the ( 1 ¯ 10 ) surface. We also find that other isostructural ternary borides Mo2NiB2, Mo2CoB2, and W2CoB2 possess similar topological band structures. Therefore, our work not only enriches the understanding of band topology for ternary borides, but also lays the foundation for the further study of topological phases manipulation and potential spintronic applications in realistic materials.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3