An Experimental Approach for Detection of the Acoustic Radiation Induced Static Component in Solids

Author:

Deng Ming-Xi

Abstract

We propose an experimental approach to directly detect the acoustic radiation induced static component (SC) of primary longitudinal (L) wave propagation in solids using an ultrasonic pitch-catch technique, where a low-frequency ultrasonic transducer is used to detect the SC generated by the co-propagating primary L-wave tone burst that is excited by a high-frequency ultrasonic transducer. Essentially, the experimental approach proposed uses a dynamic method to detect the SC generated. The basic requirement is that the central frequency of the low-frequency ultrasonic transducer needs to be near the center of the main lobe frequency range of the time-domain envelope of the primary L-wave tone burst. Under this condition, the main lobe of the frequency spectrum of the SC pulse generated adequately overlaps with that of the low-frequency ultrasonic transducer. This will enable the generated SC pulse to be directly detected by the low-frequency ultrasonic transducer. The performed experimental examination validates the feasibility and effectiveness of the proposed approach for direct detection of the acoustic radiation induced SC generated by L-wave propagation in solids.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3