Tunable Superconductivity in 2H-NbSe2 via in situ Li Intercalation

Author:

Zhou Kaiyao,Deng Jun,Guo Liwei,Guo Jiangang

Abstract

Using the newly-developed solid ionic gating technique, we measure the electrical transport property of a thin-flake NbSe2 superconductor (T c = 6.67 K) under continuous Li intercalation and electron doping. It is found that the charge-density-wave transition is suppressed, while at the same time a carrier density, decreasing from 7 × 1014 cm–2 to 2 × 1014 cm–2 also occurs. This tunable capability in relation to carrier density is 70%, which is 5 times larger than that found using the liquid ionic gating method [Phys. Rev. Lett. 117 (2016) 106801]. Meanwhile, we find that the scattering type of conduction electrons transits to the sd process, which may be caused by the change of the occupied states of 4d-electrons in Nb under the condition of Li intercalation. Simultaneously, we observe a certain decrement of electron-phonon coupling (EPC), based on the electron-phonon scattering model, in the high temperature range. Based on data gathered from in situ measurements, we construct a full phase diagram of carrier density, EPC and T c in the intercalated NbSe2 sample, and qualitatively explain the variation of T c within the BCS framework. It is our opinion that the in situ solid ionic gating method provides a direct route to describing the relationship between carrier density and superconductivity, which is helpful in promoting a clearer understanding of electronic phase competition in transition metal dichalcogenides.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3