Author:
Zhang Tian-Yi,Yan Qing,Sun Qing-Feng
Abstract
We propose a new method to construct low-dimensional quantum devices consisting of the magnetic topological insulators. Unlike previous systems based on locally depleting two-dimensional electron gas in semiconductor heterojunctions, magnetization provides a simpler and rewriteable fabrication way. The motion of electrons can be manipulated through the domain wall formed by the boundary between different magnetic domains. Here, three devices designed by local magnetization are presented. For the quantum point contact, conductance exhibits quantized plateaus with the increasing silt width between two magnetic domains. For the quantum dot, conductance shows pronounced peaks as the change of gate voltage. Finally, for the Aharonov–Bohm ring, conductance oscillates periodically with the external magnetic field. Numerical results show that the transport of these local magnetization systems is identical to that of the previous systems based on depleting two-dimensional electron gas, and the only difference is the approach of construction. These findings may pave the way for realization of low-power-consumption devices based on magnetic domain walls.
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献