Author:
Li Yunlong,Huang Chaozhi,Wang Guohua,Hu Jiayuan,Duan Shaofeng,Xu Chenhang,Lu Qi,Jing Qiang,Zhang Wentao,Qian Dong
Abstract
Using high-resolution angle-resolved and time-resolved photoemission spectroscopy, we have studied the low-energy band structures in occupied and unoccupied states of three ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4 near the Fermi level. In previously confirmed topological insulator GeBi2Te4 compounds, we confirmed the existence of the Dirac surface state and found that the bulk energy gap is much larger than that in the first-principles calculations. In SnBi2Te4 compounds, the Dirac surface state was observed, consistent with the first-principles calculations, indicating that it is a topological insulator. The experimental detected bulk gap is a little bit larger than that in calculations. In Sn0.571Bi2.286Se4 compounds, our measurements suggest that this nonstoichiometric compound is a topological insulator although the stoichiometric SnBi2Se4 compound was proposed to be topological trivial.
Subject
General Physics and Astronomy
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献