Abstract
Fractional quantum Hall systems are often described by model wave functions, which are the ground states of pure systems with short-range interaction. A primary example is the Laughlin wave function, which supports Abelian quasiparticles with fractionalized charge. In the presence of disorder, the wave function of the ground state is expected to deviate from the Laughlin form. We study the disorder-driven collapse of the quantum Hall state by analyzing the evolution of the ground state and the single-quasihole state. In particular, we demonstrate that the quasihole tunneling amplitude can signal the fractional quantum Hall phase to insulator transition.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献