Author:
Wang Guangqiang,Chang Guoqing,Zhou Huibin,Ma Wenlong,Lin Hsin,Hasan M. Zahid,Xu Su-Yang,Jia Shuang
Abstract
Metal–insulator transition (MIT) is one of the most conspicuous phenomena in correlated electron systems. However such a transition has rarely been induced by an external magnetic field as the field scale is normally too small compared with the charge gap. We present the observation of a magnetic-field-driven MIT in a magnetic semiconductor β-EuP3. Concomitantly, we find a colossal magnetoresistance in an extreme way: the resistance drops billionfold at 2K in a magnetic field less than 3T. We ascribe this striking MIT as a field-driven transition from an antiferromagnetic and paramagnetic insulator to a spin-polarized topological semimetal, in which the spin configuration of Eu2+ cations and spin-orbital coupling play a crucial role. As a phosphorene-bearing compound whose electrical properties can be controlled by the application of field, β-EuP3 may serve as a tantalizing material in the basic research and even future electronics.
Subject
General Physics and Astronomy
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献