Indium-Gallium-Zinc-Oxide-Based Photoelectric Neuromorphic Transistors for Spiking Morse Coding

Author:

Lin Xinhuang,Long Haotian,Ke Shuo,Wang Yuyuan,Zhu Ying,Chen Chunsheng,Wan Changjin,Wan Qing

Abstract

The human brain that relies on neural networks communicated by spikes is featured with ultralow energy consumption, which is more robust and adaptive than any digital system. Inspired by the spiking framework of the brain, spike-based neuromorphic systems have recently inspired intensive attention. Therefore, neuromorphic devices with spike-based synaptic functions are considered as the first step toward this aim. Photoelectric neuromorphic devices are promising candidates for spike-based synaptic devices with low latency, broad bandwidth, and superior parallelism. Here, the indium-gallium-zinc-oxide-based photoelectric neuromorphic transistors are fabricated for Morse coding based on spike processing, 405-nm light spikes are used as synaptic inputs, and some essential synaptic plasticity, including excitatory postsynaptic current, short-term plasticity, and high-pass filtering, can be mimicked. More interestingly, Morse codes encoded by light spikes are decoded using our devices and translated into amplitudes. Furthermore, such devices are compatible with standard integrated processes suitable for large-scale integrated neuromorphic systems.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3