Phonon Thermal Transport at Interfaces of a Graphene/Vertically Aligned Carbon Nanotubes/Hexagonal Boron Nitride Sandwiched Heterostructure

Author:

Li 李 Menglin 檬璘,Shakoori Muhammad Asif,Wang 王 Ruipeng 瑞鹏,Li 李 Haipeng 海鹏

Abstract

Molecular dynamics simulation is used to calculate the interfacial thermal resistance of a graphene/carbon nanotubes/hexagonal boron nitride (Gr/CNTs/hBN) sandwiched heterostructure, in which vertically aligned carbon nanotube (VACNT) arrays are covalently bonded to graphene and hexagonal boron nitride layers. We find that the interfacial thermal resistance (ITR) of the Gr/VACNT/hBN sandwiched heterostructure is one to two orders of magnitude smaller than the ITR of a Gr/hBN van der Waals heterostructure with the same plane size. It is observed that covalent bonding effectively enhances the phonon coupling between Gr and hBN layers, resulting in an increase in the overlap factor of phonon density of states between Gr and hBN, thus reducing the ITR of Gr and hBN. In addition, the chirality, size (diameter and length), and packing density of sandwich-layer VACNTs have an important influence on the ITR of the heterostructure. Under the same CNT diameter and length, the ITR of the sandwiched heterostructure with armchair-shaped VACNTs is higher than that of the sandwiched heterostructure with zigzag-shaped VACNTs due to the different chemical bonding of chiral CNTs with Gr and hBN. When the armchair-shaped CNT diameter increases or the length decreases, the ITR of the sandwiched heterostructure tends to decrease. Moreover, the increase in the VACNT packing density also leads to a continuous decrease in the ITR of the sandwiched heterostructure, attributed to the extremely high intrinsic thermal conductivity of CNTs and the increase of out-of-plane heat transfer channels. This work may be helpful for understanding the mechanism for ITR in multilayer vertical heterostructures, and provides theoretical guidance for a new strategy to regulate the interlayer thermal resistance of heterostructures by optimizing the design of sandwich layer thermal interface materials.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3