Author:
Yang Yu,Li XiuLing,Zhang Lifa
Abstract
Recently, the negative differential thermal resistance effect was discovered in a homojunction made of a negative thermal expansion material, which is very promising for realizing macroscopic thermal transistors. Similar to the Monte Carlo phonon simulation to deal with grain boundaries, we introduce positive temperature-dependent interface thermal resistance in the modified Lorentz gas model and find negative differential thermal resistance effect. In the homojunction, we reproduce a pair of equivalent negative differential thermal resistance effects in different temperature gradient directions. In the heterojunction, we realize the unidirectional negative differential thermal resistance effect, and it is accompanied by the super thermal rectification effect. Using this new way to achieve high-performance thermal devices is a new direction, and will provide extensive reference and guidance for designing thermal devices.
Subject
General Physics and Astronomy
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献