A high-performance thermal transistor based on interfacial negative differential thermal resistance

Author:

Yang Yu1ORCID,Zhao Yunshan1ORCID,Zhang Lifa1ORCID

Affiliation:

1. Phonon Engineering Research Center of Jiangsu Province, Center for Quantum Transport and Thermal Energy Science, Institute of Physics Frontiers and Interdisciplinary Sciences, School of Physics and Technology, Nanjing Normal University , Nanjing 210023, China

Abstract

A thermal transistor, which can achieve the smart, flexible, and precisely controlled thermal management, proves to be a promising thermal device. Recently, thermal transistors based on the negative differential thermal resistance (NDTR) have been regarded as the most feasible configuration considering their simple structures. Among the several methods to implement NDTR, the method of reducing the contact pressure between mated surfaces by using the negative thermal expansion material, thus generating a negative temperature dependent interface thermal conductance and accompanied NDTR, is the most likely to be observed experimentally. In this paper, a thermal transistor based on NDTR is designed by engineering the interfacial thermal resistance. Moreover, we optimize the switching function and the amplification function of the transistor by only adjusting the temperature and the length of the source terminal. As an example, a silicon thermal transistor with a high switching ratio as well as an accurately controlled thermal flux amplification function is discussed at low temperature. The design and optimization of macroscopic thermal transistor will promote the rapid development of thermal functional devices and help to control thermal flux in a more flexible and effective way.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Department of Science and Technology of Jiangsu Province

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Jiangsu Specially-Appointed Professor Program

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3