Affiliation:
1. Phonon Engineering Research Center of Jiangsu Province, Center for Quantum Transport and Thermal Energy Science, Institute of Physics Frontiers and Interdisciplinary Sciences, School of Physics and Technology, Nanjing Normal University , Nanjing 210023, China
Abstract
A thermal transistor, which can achieve the smart, flexible, and precisely controlled thermal management, proves to be a promising thermal device. Recently, thermal transistors based on the negative differential thermal resistance (NDTR) have been regarded as the most feasible configuration considering their simple structures. Among the several methods to implement NDTR, the method of reducing the contact pressure between mated surfaces by using the negative thermal expansion material, thus generating a negative temperature dependent interface thermal conductance and accompanied NDTR, is the most likely to be observed experimentally. In this paper, a thermal transistor based on NDTR is designed by engineering the interfacial thermal resistance. Moreover, we optimize the switching function and the amplification function of the transistor by only adjusting the temperature and the length of the source terminal. As an example, a silicon thermal transistor with a high switching ratio as well as an accurately controlled thermal flux amplification function is discussed at low temperature. The design and optimization of macroscopic thermal transistor will promote the rapid development of thermal functional devices and help to control thermal flux in a more flexible and effective way.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Department of Science and Technology of Jiangsu Province
Postgraduate Research & Practice Innovation Program of Jiangsu Province
Jiangsu Specially-Appointed Professor Program
Subject
Physics and Astronomy (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献