Author:
Zhu Jiankai,Wang Luming,Wu Jiaqi,Liang Yachun,Xiao Fei,Xu Bo,Zhang Zejuan,Fan Xiulian,Zhou Yu,Xia Juan,Wang Zenghui
Abstract
Laser interferometry is an important technique for ultrasensitive detection of motion and displacement. We push the limit of laser interferometry through noise optimization and device engineering. The contribution of noises other than shot noise is reduced from 92.6% to 62.4%, demonstrating the possibility towards shot-noise-limited measurement. Using noise thermometry, we quantify the laser heating effect and determine the range of laser power values for room-temperature measurements. With detailed analysis and optimization of signal transduction, we achieve 1.2 fm/Hz1/2 displacement measurement sensitivity at room temperature in two-dimensional (2D) CaNb2O6 nanomechanical resonators, the best value reported to date among all resonators based on 2D materials. Our work demonstrates a possible pathway towards quantum-noise-limited measurement at room temperature.
Subject
General Physics and Astronomy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献