Using a mixture design method to optimize the behavior of high-performance sand concrete

Author:

Ben Salah Hadji,Dalila Benamara,Bachir Taallah

Abstract

Purpose This paper aims to express a mathematical model that predicts the effect of mineral additives on the physical–mechanical properties of high-performance sand concrete (HPSC), using SAS's JMP7 statistical analysis software. Design/methodology/approach A mixture design modeling approach is applied to sand concrete (SC) for optimizing mixtures without being obliged to do a lot of experiments, where the cement is partially replaced with two mineral additives silica fume (SF) and blast furnace slag (BFS) in proportions as high as 20% of the mass. A total of 15 mixtures of sand concrete is prepared in the laboratory using this analytical technique in combinations with binary and ternary systems to estimate the workability and the compressive strength (CS) of sand concrete at 7 and 28 days. Findings The results obtained showed that the use of derived models based on the experimental design approach greatly assisted in understanding the interactions between the various parameters of the studied mixtures; the mathematical models present excellent correlation coefficients (R² = 0.96 for CS7 days, R² = 0.93 for CS28 days and R² = 0.95 for slump) for all studied responses. Moreover, it was also found that the inclusion of additives (SF and BFS) in binary mixture SC12 and ternary mixtures SC8 leads to a significant improvement in mechanical strength compared to reference sand concrete SC15. These results give the possibility to obtain a formulation of HPSC. Originality/value This paper shows the possibility of manufacturing high-performance sand-concrete with good compressive strength; the developed mathematical model by using SAS's JMP7 statistical analysis software allowed us to reach a strength compression value of about 60 MPa, in 28 days, by replacing 10% of the cement weight with silica fume. Furthermore, with partial replacement of the cement weight (15%) with two additions such as silica fume (10%) and blast furnace slag (5%), a 58 MPa of compressive strength can be achieved, without overlooking the fact that this can be a key economic and environmental alternative.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference25 articles.

1. Amélioration de la qualité des bétons de sable par incorporation de fillers de laitier granulé d’El-Hadjar,2005

2. Influence of glass powder incorporation on the physical-mechanical properties of sand concrete;World Journal of Engineering,2021

3. Using mixture design method to optimizing concretes characteristics made with binary and ternary sands;World Journal of Engineering,2021

4. Effect of the treatment of wood shavings on the physico-mechanical characteristics of wood sand concretes;Construction and Building Materials,2009

5. Effect of the addition of wood shavings on thermal conductivity of sand concretes: experimental study and modelling;Construction and Building Materials,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3