Author:
Attia Ahmed,Guettala Salim,Zaitri Rebih
Abstract
Purpose
The purpose of this paper is to implement the mathematical models to predict concretes physico-mechanical characteristics made with binary and ternary sands using a mixture design method. It is a new technique that optimizes mixtures without being obliged to do a lot of experiments. The goal is to find the law governing the responses depending on mixture composition and capable of taking into account the effect of each parameter separately and in interaction between several parameters on the characteristics studied.
Design/methodology/approach
Mixture design method was used for optimizing concretes characteristics and studying the effects of river sand (RS), dune sand (DS) and crushed sand (CS) in combinations of binary system and ternary on workability, the compressive and flexural strengths of concretes at 7 and 28 days. A total of 21 mixtures of concrete were prepared for this investigation. The modeling was carried out by using JMP7 statistical software.
Findings
Mixture design method made it possible to obtain, with good precision, the statistical models and the prediction curves of studied responses. The models have relatively good correlation coefficients (R2 = 0.70) for all studied responses. The use of binary and ternary mixtures sands improves the workability and their mechanical strengths. The obtained results proved that concrete, based on binary mixture C15, presents the maximum compressive strength (MCS) on 28 day with an improvement of around 20%, compared to reference concrete (C21). For ternary mixtures, MCS on 28 day was obtained for the mixture C10 with an improvement of around 15% compared to C21. Increase in compressive strength during the progress of hydration reactions was accompanied by an increase in the flexural strength, but in different proportions.
Originality/value
The partial incorporation of DS (= 40%) in the concrete formulation can provide a solution for some work in the southern regions of country. In addition, the CS is an interesting alternative source for replacing 60% of RS. The concrete formulation based on local materials is really capable of solving the economic and technical problems encountered in the building field, as well as environmental problems. Local resources therefore constitute an economic, technological and environmental alternative.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献