Case study of high strength concrete mix proportioning optimization

Author:

Hadji TarekORCID,Attia AhmedORCID

Abstract

PurposeThe purpose of this work is to discuss high-strength concrete mix proportioning optimization. In this study, the three parameters (W/B ratio), coarse aggregate maximum size (Dmax) and superplasticizer dosage (Sp%) were considered.Design/methodology/approachA full factorial design with three factors and two levels was carried out. The statistical analysis and analysis of variance of statistical models were made easier with the aid of JMP7 software. The generated models explain how each parameter affects the mechanical compressive strength at 28 days (Cs28) and slump, and they have an excellent determination coefficient (R2 = 0.99). For each high-strength concrete (HSC) mixture, the slump was measured four times: at 0 min, 20 min, 40 min and 60 min.FindingsThe results show that HSC6 (0.35(W/B), 12.5(Dmax), 1.4(Sp%)) is the best HSC mixture, with a (Cs28) of 71.84 MPa, a slump of 22 cm, and slump loss of 3.5 cm in 60 min.Originality/valueQuantifying the impact of high-strength concrete mix components from a small number of experiments is made achievable by combining two methods: the Dreux-Gorisse method and the full factorial design approach. It's possible to tune the mix proportioning of the high-strength concrete for the desired slump and compressive mechanical strength thanks to the created statistical models.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference33 articles.

1. From gigapascals to nanometers,1988

2. Effect of polycarboxylate-ether admixtures on calcium aluminate cement pastes. Part 1: compatibility studies;Industrial and Engineering Chemistry Research,2013

3. Guide for selecting proportions for high-strength concrete with portland cement and fly ash;ACI Materials Journal,1993

4. Using mixture design method to optimizing concretes characteristics made with binary and ternary sands;World Journal of Engineering,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3