Frictional characteristics of thin-walled tubes in liquid impact forming

Author:

Ma Jianping,Yang Lianfa,He Yulin,Guo Jian

Abstract

Purpose This paper aims to study frictional characteristics of thin-walled tubes in the liquid impact forming (LIF) process. Design/methodology/approach LIF experiments under various impacting velocities were performed on SUS304 stainless steel tubes with various guiding lengths on a custom-designed measurement system to investigate the effects of impacting velocity and guiding length on the coefficient of friction (COF) in the guiding zone. Findings The results indicate that the COF changes dynamically in the guiding zone and decreases with the deformation process. The reduction range of the COF is wider in LIF than in both the conventional and pulsating hydroforming (THF), which may be contributed to the impacting velocities in a short time. Moreover, the COF decreases faster in the first half of the LIF process than in the second half. Under different impacting velocities and guiding lengths, the decreasing rate of the COF in the first half is more sensitive and obvious than that in the second half. Originality/value A method for determining the COF in the guiding zone in LIF is proposed and the frictional characteristics in LIF are studied. Comparing the COF of tubes in conventional THF, pulsating THF and the LIF process is valuable for improving and predicting the tubular formability in various hydraulic environments for industrial production. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2019-0269

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference11 articles.

1. Evaluation of the friction coefficient in tube hydroforming with the ‘corner filling test’ in a square section die;The International Journal of Advanced Manufacturing Technology,2017

2. Tube hydroforming process: a reference guide;Materials & Design,2012

3. Tube hydroforming compression test for friction estimation-numerical inverse method, application, and analysis;The International Journal of Advanced Manufacturing Technology,2013

4. Friction tests in tube hydroforming;Proceedings of the Institution of Mechanical Engineers. Part B: Engineering Manufacture,2005

5. Experimental and numerical assessment of mechanical properties of thin-walled aluminum parts produced by liquid impact forming;International Journal of Advanced Manufacturing Technology,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3