DLC-coated spur gears – part I: friction reduction

Author:

Schwarz Andreas,Ebner Martin,Lohner Thomas,Stahl Karsten,Bobzin Kirsten,Brögelmann Tobias,Kalscheuer Christian,Thiex Matthias

Abstract

Purpose This paper aims to address the influence of diamond-like carbon (DLC) coatings on the frictional power loss of spur gears. It shows potentials for friction and bulk temperature reduction in industrial use. From a scientific point of view, the thermal insulation effect on fluid friction is addressed, which lowers viscosity in the gear contact due to increasing contact temperature. Design/methodology/approach Thermal insulation effect is analyzed in detail by means of the heat balance and micro thermal network of thermal elastohydrodynamic lubrication contacts. Preliminary results at a twin-disk test rig are summarized to categorize friction and bulk temperature reduction by DLC coatings. Based on experiments at a gear efficiency test rig, the frictional power losses and bulk temperatures of DLC-coated gears are investigated, whereby load, speed, oil temperature and coatings are varied. Findings Experimental investigations at the gear efficiency test rig showed friction and bulk temperature reduction for all operating conditions of DLC-coated gears compared to uncoated gears. This effect was most pronounced for high load and high speed. A reduction of the mean gear coefficient of friction on average 25% and maximum 55% was found. A maximum reduction of bulk temperature of 15% was observed. Practical implications DLC-coated gears show a high potential for reducing friction and improving load-carrying capacity. However, the industrial implementation is restrained by the limited durability of coatings on gear flanks. Therefore, a further and overall consideration of key durability factors such as substrate material, pretreatment, coating parameters and gear geometry is necessary. Originality/value Thermal insulation effect of DLC coatings was shown by theoretical analyses and experimental investigations at model test rigs. Although trial tests on gears were conducted in literature, this study proves the friction reduction by DLC-coated gears for the first time systematically in terms of various operating conditions and coatings. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0257/

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3