Analytical and numerical study on convection of nanofluid past a moving wedge with Soret and Dufour effects

Author:

Md Kasmani Ruhaila,Sivasankaran S.,Bhuvaneswari M.,Hussein Ahmed Kadhim

Abstract

Purpose The purpose of this study is to investigate the Soret and Dufour effects on the double-diffusive convective boundary layer flow of a nanofluid past a moving wedge in the presence of suction. Design/methodology/approach The similarity transformation is applied to convert the governing nonlinear partial differential equations into ordinary differential equations. Then, they are solved numerically by the fourth-order Runge–Kutta–Gill method along with the shooting technique and the Newton–Raphson method. In addition, the ordinary differential equations are also analytically solved by the homotopy analysis method. Findings The results for dimensionless velocity, temperature, solutal concentration and nanoparticle volume fraction profiles, as well as local skin friction coefficient and local Nusselt and local Sherwood numbers are presented through the plots for various combinations of pertinent parameters involved in the study. The heat transfer rate increases on increasing the Soret parameter and it decreases on increasing the Dufour parameter. The mass transfer behaves oppositely to heat transfer. Practical implication In engineering applications, a wedge is used to hold objects in place, such as engine parts in the gate valves. A gate valve is the valve that opens by lifting a wedge-shaped disc to control the timing and quantity of fluid flow into an engine. Originality/value No such investigation is available in literature, and therefore, the results obtained are novel.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3