Electropolymerization of p‐toluene sulfonic acid doped polyaniline on copper and its application as a corrosion inhibitor

Author:

Rashid Mohammad,Abdul Rahim Afidah,Jain Noordin Mohd

Abstract

PurposeThe purpose of this paper is to study the inhibitive effect of p‐toluene sulfonic acid (p‐TSA) doped polyaniline on corrosion of copper in 0.1 M hydrochloric acid (HCl) solution.Design/methodology/approachThe electrochemical deposition of polyaniline doped with p‐TSA on pure copper metal was studied potentiodynamically. The electrochemical study of the working electrode was performed at open‐circuit potential, then using potentiodynamic polarization and also with electrochemical impedance spectroscopy in 0.1 M HCl solution. The p‐TSA doped polymer deposit was characterized using Fourier transform infrared spectroscopy, with the UV‐vis and thermogravimetric analysis/differential scanning calorimetry techniques. The morphology of the deposited polymer was studied by scanning electron microscopy.FindingsThe results revealed that the p‐TSA self‐doped polymer had better corrosion inhibition efficiency than did the un‐doped polyaniline. It exhibited approximately 88.9 percent inhibition efficiency at 2x10−3 M concentration of p‐TSA, according to charge transfer resistance (Rct) values evaluated from Nyquist plots.Research limitations/implicationsThe high dissolution tendency of metal surfaces generally occurs before the electropolymerization potential of the monomer is achieved. It was difficult to electrodeposit the conducting organic polymer on the surface of metal.Practical implicationsSome organic conducting polymers are toxic and hazardous from the environmental viewpoint. The electrochemical deposition of p‐TSA doped polyaniline is impractical for larger structures.Originality/valueThe paper demonstrates that p‐TSA doped polyaniline is environmentally benign and can be used for the protection of copper metal as a cathodic inhibitor.

Publisher

Emerald

Subject

General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3