Copper corrosion inhibitors based on polyvinyl alcohol and silver nanoparticles

Author:

Grecu Roxana1,Samide Adriana1,Iacobescu Gabriela2,Cioateră Nicoleta1,Popescu Alexandru1

Affiliation:

1. University of Craiova, Faculty of Sciences, Department of Chemistry, Bucuresti, Craiova, Romania

2. University of Craiova, Faculty of Sciences, Department of Physics, Craiova, Romania

Abstract

Polyvinyl alcohol (PVA) and silver nanoparticles/poly(vinyl) alcohol system (nAg/PVA) were investigated as copper corrosion inhibitors in hydrochloric acid solution by electrochemical measurements, such as potentiodynamic polarization and cyclic voltammetry associated with the atomic force microscopy (AFM) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDS) analysis. The potentiodynamic curves processed as a semilogarithmic diagram were employed for corrosion current density (icorr) computing that reached the highest value for copper corrosion in uninhibited hydrochloric acid solution and the lowest value in nAg/PVA inhibitor presence, resulting in a picked-up inhibition performance, greater than 95%. Recording ten cycles of CV, the initiation, development and stability of upper-layer formed on the copper surface in the presence of inhibitors was confirmed. It can be asserted that PVA acts by the adsorption of Cu(II)-PVA complexes or crosslinked PVA-copper aggregates and additionally, in the presence of nAg/PVA of some compounds involving silver attached to PVA. AFM 3D images showed completely different morphologies of the copper surface layers formed in the absence and presence of inhibitors. Just like AFM, a more regular and uniform arrangement of the surface layer, due to the silver interconnected to PVA macromolecular chain, was displayed by scanning electron microscopy (SEM) images.

Publisher

National Library of Serbia

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3