Application of bird-strike verified analysis for the design of fast helicopter composite cowling

Author:

Doubrava RadekORCID,Oberthor Martin,Bělský Petr,Cabrnoch BohuslavORCID

Abstract

PurposeThe purpose of this paper is to describe the approach for the design of cowlings for a new fast helicopter from the perspective of airworthiness requirements regarding high-speed impact resistance.Design/methodology/approachValidated numerical simulation was applied to flat and simple curved test panels. High-speed camera measurement and non-destructive testing (NDT) results were used for verification of the numerical models. The final design was optimized and verified by validated numerical simulation.FindingsThe comparison between numerical simulation based on static material properties with experimental results of high-speed load shows no significant influence of strain rate effect in composite material.Research limitations/implicationsOwing to the sensitivity of the composite material on technology production, the results are limited by the material used and the production technology.Practical implicationsThe application of flat and simple curved test panels for the verification and calibration of numerical models allows the optimized final design of the cowling and reduces the risk of structural non-compliance during verification tests.Originality/valueNumerical models were verified for simulation of the real composite structure based on high-speed camera results and NDT inspection after impact. The proposed numerical model was simplified for application in a complex design and reduced calculation time.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Reference22 articles.

1. ABAQUS 6.14, (2017), “Theory manual”, available at: http://abaqus.software.polimi.it/v6.14/.

2. Numerical modelling of bird strike on aerospace structures by means of coupling FE-SPH;International Journal of Integrated Engineering,2021

3. Numerical and experimental investigation of the shock and steady state pressures in the bird material during bird strike;International Journal of Impact Engineering,2017

4. ASTM D7136M-20 (2020), Standard Test Method for Measuring the Damage Resistance of a Fibre-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event, ASTM International, West Conshohocken, PA.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3