Key assembly structure identification in complex mechanical assembly based on multi-source information

Author:

Han ZhoupengORCID,Mo Rong,Chang Zhiyong,Hao Li,Niu Weilong

Abstract

Purpose The purpose of this paper is to find a method for key assembly structure identification in complex mechanical assembly. Three-dimensional model reuse plays an increasingly important role in complex product design and innovative design. Assembly model has become important resource of models reuse in enterprises, which contains certain function assembly structures. These assembly structures implicating plenty of design intent and design experience knowledge can be used to support function-structure design, modular design reuse and semantics analysis for complex product. Design/methodology/approach A method for identifying key assembly structures in assembly model is presented from the viewpoint of assembly topology and multi-source attributes. First, assembly model is represented based on complex network. Then, a two-level evaluation model is put forward to evaluate importance of parts assembled, and the key function parts in assembly can be obtained. After that, on the basis of the function parts, a heuristic algorithm upon breadth first searching is given to identify key assembly structures. Findings The method could be used to evaluate key function parts and identify key assembly structures in complex mechanical assembly according to the specific circumstances. Practical implications The method can not only help designers find the key assembly structure in complex mechanical assembly model, facilitate the function-structure designing and semantics analyzing, and thereby improve the efficiency of product knowledge reuse, but also assist in analyzing influence scope of key function part changing and optimization of the assembly process for complex mechanical assembly. Originality/value The paper is the first to propose a method for key assembly structure identification in complex mechanical assembly, where the key function parts can be evaluated through a two-level evaluation model, and the key assembly structures are identified automatically based on complex network.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference20 articles.

1. A review on assembly sequence generation and its automation;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2016

2. Influence of assembly predicate consideration on optimal assembly sequence generation;Assembly Automation,2015

3. A note on mechanical feasibility predicate for robotic assembly sequence generation,2016

4. Multi-level assembly model for top-down design of mechanical products;Computer-Aided Design,2012

5. A flexible assembly retrieval approach for model reuse;Computer-Aided Design,2012

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3