Error Propagation Model Using Jacobian-Torsor Model Weighting for Assembly Quality Analysis on Complex Product

Author:

Xi Yue,Gao Zhiyong,Chen Kun,Dai Hongwei,Liu Zhe

Abstract

The assembly quality of a complex product is the result of the combined effects of multiple manufacturing stages, including design, machining and assembly, and it is influenced by associated elements with complex coupling mechanisms. These elements generate and transmit assembly quality deviations during the assembly process which are difficult to analyze and express effectively. Current studies have focused on the analysis and optimization of the assembly surface errors of single or few components, while lacking attention to the impact of errors on the whole product. Therefore, in order to solve the above problem, an assembly quality deviation analysis (AQDA) model is constructed in this paper to analyze the deviation transfer process in the assembly process of complex products and to obtain the key features to optimize. Firstly, the assembly process information is extracted and the assembly quality network model is established on the basis of complex networks. Second, the Jacobian-Torsor (J-T) model is introduced to form a network edge weighting method suitable for the assembly process to objectively express the error propagation among product part features. Third, an error propagation model (EPM) is designed to simulate the error propagation and diffusion processes in the assembly network. Finally, the assembly process of an aero-engine fan rotor is used as an example for modeling and analysis. The results show that the proposed method can effectively identify the key assembly features in the assembly process of complex products and determine the key quality optimization points and monitoring points of the products, which can provide a decision basis for product quality optimization and control.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3