Intermetallics evolution and its reliability effects on micro-joints in flip chip assemblies

Author:

Tian Ye,Fang Heng,Ren Ning,Qiu Chao,Chen Fan,Sitaraman Suresh

Abstract

Purpose This paper aims to assess precise correlations between intermetallic compounds (IMCs) microstructure evolutions and the reliability of micro-joints with a Cu/SAC305solder/Ni structure using thermal shock (TS) tests. Design/methodology/approach This paper uses 200-µm pitch silicon flip chips with nickel (Ni) pads and stand-off height of approximately 60 µm, assembled on substrates with copper (Cu) pads. After assembly, the samples were subjected to air-to-air thermal shock testing from 55 to 125 per cent. The transfer time was less than 5 s, and the dwell time at each temperature extreme was 15 min. To investigate the microstructure evolution and crack growth, two samples were removed from the thermal shock chamber at 0, 400, 1,200, 2,000, 5,800 and 7,000 cycles. Findings The results showed that one (Cu, Ni)6Sn5/(Ni, Cu)3Sn4 dual-layer structure formed at the Ni pad interface of chip side dominates the micro-joints failure. This is because substantial (Ni, Cu)3Sn4 grain boundaries provide a preferential pathway for the catastrophic crack growth. Other IMCs microstructure evolutions that cause the prevalent joints failure as previously reported, i.e. thickened interfacial (Cu, Ni)6Sn5 and Ni3P layer, and coarsened IMCs inside the solder matrix, only contributed to the occurrence of fine cracks. Moreover, the typical interfacial IMCs spalling triggered by thermally induced stress did not take place in this study, showing a positive impact in the micro-joint reliability. Originality/value As sustained trends toward multi-functionality and miniaturization of microelectronic devices, the joints size is required to be constantly scaled down in advanced packages. This arises a fact that the reliability of small-size joints is more sensitive to the IMCs because of their high volume proportion and greatly complicated microstructure evolutions. This paper evaluated precise correlations between IMCs microstructure evolutions and the reliability of micro-joints with a Cu/SAC305solder/Ni structure using TS tests. It found that one (Cu, Ni)6Sn5/(Ni, Cu)3Sn4 dual-layer structure formed at the Ni pad interface dominate the micro-joints failure, whereas other IMCs microstructure evolutions that cause the prevalent joints failure exhibited nearly negligible effects.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference36 articles.

1. Evolution of the hardness and young’s moduli of interlayers in Sn99Cu1/Cu solder joints subjected to isothermal ageing;Journal of Materials Science: Materials in Electronics,2017

2. A review of lead-free solders for electronics applications;Microelectronics Reliability,2017

3. Investigation of mechanical shock testing of lead-free SAC solder joints in fine pitch BGA package;Microelectronics Reliability,2008

4. Local shear stress-strain response of Sn-3.5 Ag/Cu solder joint with high fraction of intermetallic compounds: experimental analysis;Journal of Alloys and Compounds,2016

5. Pb-Free solder joint Thermo-Mechanical modeling: state of the art and challenges;JOM,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3