Author:
Seyedipour Seyed Hamed,Fathi Jegarkandi Mohsen,Shamaghdari Saeed
Abstract
Purpose
The purpose of this paper is to design an adaptive nonlinear controller for a nonlinear system of integrated guidance and control.
Design/methodology/approach
A nonlinear integrated guidance and control approach is applied to a homing, tail-controlled air vehicle. Adaptive backstepping controller technique is used to deal with the problem, and the Lyapanov theory is used in the stability analysis of the nonlinear system. A nonlinear model of normal force coefficient is obtained from an existing nonlinear model of lift coefficient which was validated by open loop response. The simulation was performed in the pitch plane to prove the benefits of the proposed scheme; however, it can be readily extended to all the three axes.
Findings
Monte Carlo simulations indicate that using nonlinear adaptive backstepping formulation meaningfully improves the performance of the system, while it ensures stability of a nonlinear system.
Practical implications
The proposed method could be used to obtain better performance of hit to kill accuracy without the expense of control effort.
Originality/value
A nonlinear adaptive backstepping controller for nonlinear aerodynamic air vehicle is designed and guaranteed to be stable which is a novel-based approach to the integrated guidance and control. This method makes noticeable performance improvement, and it can be used with hit to kill accuracy.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献