Integrated guidance and control design by active disturbance rejection method for high-velocity target interceptor with DCS thruster

Author:

Chitsaz Ali,Naghash Abolghasem,Saberi Farhad Fani

Abstract

AbstractThe present paper proposes a novel integrated guidance and control (IGC) method for engaging with high-speed targets such as ballistic projectiles. considering an extreme short period of terminal engagement due to high relative velocity between target and interceptor, it is particularly important for IGC law to show desirable performance in the presence of various uncertainties (e.g. variation in aerodynamic coefficients) and disturbances (e.g. target maneuver and drag). This article extends the ICG law for mismatched and feedback form equations based on the Active Disturbance Rejection Control (ADRC) method using the back-stepping technique and the Reduced-order Extended State Observer (RESO). The primary consideration is the application of thrusters on the center of mass as the Divert Control System (DCS), along with the daisy-chain technique for control allocation between the fins and thruster commands. Contrary to previous research, the filter and angle measurement error are modeled for the seeker as a crucial parameter to highlight the significance of the thruster. The simulation results indicate the efficiency of the developed method for near-miss or hit-to-kill engagement with tactical ballistic targets. It is shown that the thruster plays a significant role in high-altitude engagements, specifically in the presence of non-ideal seeker. Finally, using the Monte Carlo simulation, it is proved that adding inner loops to the developed technique will not remove the IGC’s advantage over the conventional approach and Non-singular Terminal Sliding Mode (NTSM) guidance law.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3