Multi-rate sensor fusion for underwater heading estimation

Author:

Bandala Manuel,Salgado Tomás,Chávez Ramón

Abstract

Purpose – This paper presents the results of a heading estimation method for a remotely operated vehicle (ROV). The output rate of commercially available underwater compasses is typically in the order of a few Hz. Heading frequencies of at least 1 KHz are desirable for navigation and control purposes. Design/methodology/approach – The estimation was performed by fusioning the signals of three inertial sensors: the ROV’s own underwater compass (which operates roughly at 10 Hz or less), the ROV’s embedded gyro and an additional angular rate sensor that provides readings from 1 to 3 KHz. The output signal of the additional angular rate sensor is not part of the proposed Kalman filter. Nonetheless a five-point Newton-Cotes closed integration of such signal is fed into the Kalman filter implementation that performs the required heading estimation at 1 KHz or more. Findings – The proposed Kalman filter implementation is a suitable approach to estimate heading position even though the original compass signal rate is significantly slower than the signal required for both assisted and autonomous control. Research limitations/implications – The estimated heading yield good results in both simulation and experimental environments. Originality/value – The method was embedded in a dedicated 16-bit DSP that handles both the acquisition of the three signals and the heading estimation, hence resulting in a very low-cost solution. The embedded solution was tested in the developed submarine and the obtained high-rate heading parameter is now used by the control system of the ROV.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference15 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3