Direct polymer additive tooling – effect of additive manufactured polymer tools on part material properties for injection moulding

Author:

Kampker Achim,Triebs Johannes,Kawollek Sebastian,Ayvaz Peter,Beyer Tom

Abstract

Purpose This study aims to investigate the influence of additive manufactured polymer injection moulds on the mechanical properties of moulded parts. Therefore, polymer moulds are used to inject standard specimens to compare material properties to specimens produced using a conventional aluminium tool. Design/methodology/approach PolyJet technology is used to three-dimensional (3D)-print a mould insert in Digital ABS and selective laser sintering (SLS) technology is used to 3D-print a mould insert in polyamide (PA) 3200 GF. A conventionally aluminium milled tool serves as reference. Standard specimens are produced to compare resulting mechanical properties, shrinkage behaviour and morphology. Findings The determined material characteristics of the manufactured prototypes from the additive manufactured tools show differences in terms of mechanical behaviour to those from the aluminium reference tool. The most significant differences are an up to 25 per cent lower tensile elongation and an up to 63 per cent lower elongation at break resulting in an embrittlement of the specimens produced. These differences seem to be mainly due to the different morphological structure caused by the lower thermal conductivity and greater surface roughness of the polymer tools. Research limitations/implications The determined differences in mechanical behaviour can partly be assigned to differences in surface roughness and morphological structure of the resulting parts. The exact extend of either cause, however, cannot be clearly determined. Originality/value This study provides a comparison between the part material properties from conventionally milled aluminium tools and polymer inserts manufactured via additive tooling.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference26 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3