3D printing of composites: design parameters and flexural performance

Author:

Korkees Feras,Allenby James,Dorrington Peter

Abstract

Purpose 3D printing of composites has a high degree of design freedom, which allows for the manufacture of complex shapes that cannot be achieved with conventional manufacturing processes. This paper aims to assess the design variables that might affect the mechanical properties of 3D-printed fibre-reinforced composites. Design/methodology/approach Markforged Mark-Two printers were used to manufacture samples using nylon 6 and carbon fibres. The effect of fibre volume fraction, fibre layer location and fibre orientation has been studied using three-point flexural testing. Findings The flexural strength and stiffness of the 3D-printed composites increased with increasing the fibre volume fraction. The flexural properties were altered by the position of the fibre layers. The highest strength and stiffness were observed with the reinforcement evenly distributed about the neutral axis of the sample. Moreover, unidirectional fibres provided the best flexural performance compared to the other orientations. 3D printed composites also showed various failure modes under bending loads. Originality/value Despite multiple studies available on 3D-printed composites, there does not seem to be a clear understanding and consensus on how the location of the fibre layers can affect the mechanical properties and printing versatility. Therefore, this study covered this design parameter and evaluated different locations in terms of mechanical properties and printing characteristics. This is to draw final conclusions on how 3D printing may be used to manufacture cost-effective, high-quality parts with excellent mechanical performance.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference17 articles.

1. An investigation into 3D printing of fibre reinforced thermoplastic composites;Additive Manufacturing,2018

2. 3-D printing for finished products;Journal of Chemical Engineering,2017

3. Recent developments in 3D printable composite materials;RSC Advances,2016

4. Impacts of vehicle weight reduction via material substitution on life-cycle greenhouse gas emissions;Environmental Science & Technology,2015

5. Markforged Inc (2017), “Arkforged materials data sheet”, available at: www.rpsupport.co.uk/downloads/rps_markforged_data_sheets/markforged_materials_datasheet.pdf (accessed 1 May 2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3